GENE ONLINE|News &
Opinion
Blog

2018-09-20| R&DTechnology

CRISPR mediated overexpression of cocaine hydrolyzing enzyme in mouse skin patch protects against lethal overdose

by Rajaneesh K. Gopinath
Share To

By Rajaneesh K Gopinath

A promising new approach developed by a team of researchers at the University of Chicago has raised fresh hopes in treating cocaine addiction and overdoses in the near future. The breakthrough is an outcome of a collaborative endeavor between the labs of Ming Xu, Professor of Anesthesia & Critical Care, and Xiaoyang Wu, Assistant professor in the Ben May Department for Cancer Research. The results of this study are published in the September 17th issue of Nature Biomedical Engineering journal [1].

Xiaoyang Wu’s lab had made the headlines last year when they successfully employed CRISPR gene editing to manufacture insulin in skin grafts of diabetic mice [2]. This time around, they applied the same technique to overexpress an enhanced form of human butyrylcholinesterase (BChE) in mouse skin epidermal stem cells. BChE is a naturally occurring enzyme found in humans that hydrolyses cocaine but it has a very short half-life. The team used E30-6, which has a more specific catalytic activity in cocaine conversion thereby enhancing its hydrolyzing capacity to up to 4,400 times [3].

Using the CRISPR technology, the gene was inserted into the primary epidermal basal progenitor/stem cells collected from newborn mice. The cells were initially seeded onto circular, 1-centimeter-across patches of scaffolding to make organoids, which were then transplanted in to the immunocompetent donor mice addicted to cocaine. The engineered skin grafts exhibited normal epidermal stratification, proliferation and cell death. It was observed that the robust expression of human BChE protected the mice from cocaine-seeking and cocaine-induced relapse and also prevented its death against doses that are otherwise lethal.

One of the major obstacles in treating cocaine addiction is that, despite long periods of rehabilitation and recovery, victims could suffer relapses due to compulsive drug seeking. That explains the non-availability of an FDA approved drug therapy till date to counter this menace. According to the National Survey on Drug Use and Health (NSDUH) conducted in 2014, an annual estimate of approximately 913,000 Americans met the criteria of mental disorder due to cocaine abuse [4]. The authors are confident that the genome-edited skin stem cells can be used to deliver an active cocaine hydrolase long term in vivo and this promises to be an effective therapeutic option to treat cocaine abusers in future [5].

References
https://www.nature.com/articles/s41551-018-0293-z/
https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(17)30274-6
https://www.nature.com/articles/ncomms4457?origin=ppub
https://www.drugabuse.gov/publications/research-reports/cocaine/what-scope-cocaine-use-in-united-states
https://www.sciencedaily.com/releases/2018/09/180917111609.htm

 

©www.geneonline.com All rights reserved. Collaborate with us: [email protected]
Related Post
Looking Back at the Cell and Gene Therapy Leaders That Made Waves in 2024
2025-03-31
Duke University Engineers Develop AI Platform to Target “Undruggable” Diseases
2025-02-24
Tests on Sunglasses Show Deficiencies in Protection Against Ultraviolet Rays
2025-02-24
LATEST
Senti Biosciences to Showcase New Cell & GeneTherapy Data at AACR Annual Meeting 2025
2025-04-27
World Vaccine Congress Washington 2025 Recap: Urgent Calls for Trust, Tech, and Global Access
2025-04-25
Astellas’ Transformation Journey: From Merger to Global Player, Betting on the Edge of Innovation and Risk?
2025-04-25
Roche Announces Massive 50 Billion Dollar Investment in the United States
2025-04-25
Steminent Stands Ready to Showcase Novel MSC-based Therapy for Spinocerebellar Ataxia at Global Stage
2025-04-24
Arkansas Medicaid Work Requirements Led to Coverage Loss for a Significant Number of Recipients
2025-04-24
Boehringer agrees new partnership to advance first-in-class precision cancer therapies
2025-04-24
EVENT
2025-04-25
AACR Annual Meeting 2025
Chicago, U.S.A
2025-05-03
29th Taiwan Joint Cancer Conference 2025
Taipei, Taiwan
2025-05-05
Swiss Biotech Day 2025
Basel, Switzerland
2025-05-13
ASGCT 28th Annual Meeting 2025
New Orleans, U.S.A.
2025-05-30
ASCO Annual Meeting 2025
Chicago, U.S.A
2025-06-11
ISSCR 2025 Annual Meeting
Hong Kong
Scroll to Top