GENE ONLINE|News &
Opinion
Blog

.

Зеркало официального сайта всегда доступно для входа на Мостбет, даже при ограничениях. Скачать Mostbet – это шаг к удобству и азартным развлечениям.

Если вы ищете место для увлекательных ставок, обратите внимание на Joycasino, где лучшие предложения для игроков ждут вас.
last added cars
2021-01-26| Asia-PacificStartups

Data-Driven Molecular Engineering Startup Partners with Takeda to Develop Next-Gen Gene Therapies

by Eduardo Longoria
Share To

On January 25th, Chicago-based Evozyne, LLC announced the signing of strategic collaboration and license agreement with Takeda. The agreement entails that Evozyne’s evolution-based protein design technology will be used to research and develop proteins that could be incorporated into Takeda’s next-generation gene therapies for genetic disorders of metabolism and lysosomal storage.

 

Deal Terms

Paragon Biosciences creates, invests, and builds companies in biopharmaceuticals, synthetic biology, cell and gene therapy utilizing artificial intelligence. As one of Paragon’s portfolio companies, Evozyne is both privately held and specializes in molecular engineering. The company strives to solve challenges in feeding the world, curing diseases, and material science.

As per the partnership agreement, Evozyne is eligible to receive upfront payments, development and regulatory milestones, and royalty payments. For such a young company (founded in 2020), Evozyne stands to gain a lot from becoming a partner for a company like Takeda. At present, the firm has raised $9.2 million in funding but has the potential to bring in enough revenue to demonstrate sufficient growth and raise a second round of funding.

 

How Does Takeda Stand to Benefit?

“Takeda is expanding on our long-standing expertise in rare genetic diseases and foundation in gene therapy by making focused investments in differentiated, next-generation technologies, including the exciting work Evozyne is doing with protein engineering,” said Takeda Rare Diseases Drug Discovery Unit Head, Madhu Natarajan.

Takeda will benefit from this deal by having Evozyne create novel protein sequences for advancement as gene therapies. At completion and review of certain research deliverables, Takeda has the option to obtain an exclusive license to develop and commercialize the novel protein sequences as part of its gene therapy program. Despite Takeda’s multibillion-dollar portfolio, being able to make use of Evozyne’s talents as well as save costs on infrastructure is incredibly advantageous.

 

Amino Acid Metabolism Disorders

Amino acids are the building blocks of proteins required for all fundamental body processes, including enzyme production and tissue construction. People with amino Acid metabolism disorders cannot fully digest proteins from food into their constituent amino acids. Often this condition can lead to the buildup of harmful substances in the body. That can lead to severe and life-threatening health problems.

Many metabolism disorders have limited treatment options, and current therapies primarily focus on supportive and symptomatic cures. Evozyne will look to create enzymes that can remedy such metabolism disorders.

“People living with inborn errors of metabolism diseases have profound deficiencies in enzyme levels or lack of enzyme activity that lead to the build-up of toxic materials in the body,” said Rama Ranganathan, M.D., Ph.D., Co-Founder, and Chief Scientific Officer of Evozyne.

“For years, researchers have been working to convert existing cells to express the missing enzyme. We now have the ability to create new enzymes that could enable more effective gene therapy approaches that may have a greater impact on patients with these disorders.”

 

The Technology

Evozyne produces synthetic proteins for various industries using deep learning-based computational models and high-throughput gene synthesis & assay technologies to build novel, adaptive proteins. Particularly, Evozyne has a six-step process of going from statistical analysis to microfluidic assays. The statistical analysis gives the ability to analyze a large body of protein data and pick out useful information about the protein.

Following the statistical analysis, the company uses an algorithm to produce a model that relates the protein’s sequence to its function. As a result, Evozyne can design their protein with a much larger information set than those done with traditional directed evolution. Gene libraries are then designed through extensive miniaturization, process optimization, and automation.

Related Article: Takeda, KSQ Join Forces to Identify NK Cell Targets For Cancer Therapies

References
  1. https://www.evozyne.com/news/evozyne-takeda-strategic-collaboration/

 

©www.geneonline.com All rights reserved. Collaborate with us: [email protected]
Related Post
Looking at the Bigger Picture: 5 Key Takeaways from JPM 2025
2025-01-23
M&A
EY Predicts Smarter, Smaller M&A in Biotech and Pharma for 2025
2025-01-15
Menarini Group and Insilico Medicine Enter a Second Exclusive Global License Agreement for an AI Discovered Preclinical Asset Targeting High Unmet Needs in Oncology
2025-01-10
LATEST
Beyond Pouch Packaging: Hanmi Pharmaceutical Introduces a New Automated Vial Dispensing Solution in Canada and the United States
2025-02-13
NASA Says There’s a 1 in 43 Chance an Asteroid 2024 YR4 Could Hit Earth in 2032—Should We Worry?
2025-02-13
Sodium Channel Targeting: What the Latest FDA Non-Opioid Approval Reveals About the Next Big Thing in Pain Relief
2025-02-12
Novartis Reclaims Abelacimab in $925M Deal to Boost Cardiovascular Portfolio
2025-02-12
GLP-1 Weight Loss Drugs Might Cause Blindness
2025-02-11
South Korea’s Olix Strikes $660M Deal with Eli Lilly for Phase 1 MASH candidate
2025-02-11
22 USA States Sue Trump Administration for Slashing Critical Medical Research Funding
2025-02-11
EVENT
2025-02-19
Healthcare Conference Taipei 2025
Taipei, Taiwan
2025-03-04
MIXiii Health-Tech.IL
Jerusalem, Israel
2025-03-05
Medical Japan
Osaka, Japan
2025-03-17
BIO-Europe Spring 2025
Milan, Italy
2025-04-21
World Vaccine Congress 2025
Washington, U.S.A
Scroll to Top