GENE ONLINE|News &
Opinion
Blog

2022-12-27| R&D

Treating Common Heart Disease with CRISPR-Cas9 Gene Editing

by Nai Ye Yeat
Share To

Researchers from UT Southwestern successfully corrected mutations responsible for a common inherited heart condition called dilated cardiomyopathy (DCM) in both human cells and mouse models. Their findings, published in Science Translational Medicine, provide promising results for the implication of gene therapy in DCM and may become a highly feasible treatment option in the future.

Related Article: ‘Heart Attack on a Chip’ Sheds Light on Personalized Drugs Trials

The Causes and Prevalence of DCM

Dilated cardiomyopathy is characterized by dilation and impaired contraction of one or both ventricles. Affected patients have impaired systolic function and are highly susceptible to sudden cardiac death. 

As one of the most common cardiac diseases, DCM has a high prevalence rate of one per 250 people. Cardiac transplantation at a young age is the only currently effective treatment for this disease. However, a shortage of donor organs is always the main obstacle.

DCM is caused by mutations in a gene known as RNA binding motif protein 20 (RBM20), which affects the production of hundreds of proteins in cardiac muscle cells responsible for the heart’s pumping action. With their previous experience in halting the progression of Duchenne muscular dystrophy in animal models using CRISPR, the team sees the potential of this gene-editing tool to correct mutated genes in DCM.

A Promising Tool for Familial Diseases

To determine the feasibility of this approach, the team used a virus to deliver CRISPR-Cas9 components to cardiac muscle cells derived from human cells carrying two different types of DCM-causing mutations. CRISPR is used to swap a single nucleotide to correct one type of mutation. 

In another set of cells, researchers replaced a piece of DNA from mutated RBM20 with a healthy segment of this gene. After CRISPR-Cas9 treatment, the mutant cells gradually lost characteristics inherent to DCM, meaning the protein produced by RBM20 moved to its normal place in the nucleus, and the cells could make healthy proteins.  

As part of an in vivo experiment, the 1-week-old mice carrying one of these mutations did not develop enlarged hearts and had normal life spans after receiving CRISPR-Cas9 treatment. On the contrary, untreated mice had symptoms mirroring those of human DCM patients.  

To sum up, these findings demonstrated the potential of precise correction of genetic mutations as a promising therapeutic approach for DCM. However, there is still a long way to go before it becomes a standard treatment, as the sustainability of CRISPR-Cas9 and the minimal dose needed have yet to be determined. Nevertheless, scientists see the great potential of gene editing to treat a variety of other familial diseases.

©www.geneonline.com All rights reserved. Collaborate with us: [email protected]
Related Post
Looking Back at the Cell and Gene Therapy Leaders That Made Waves in 2024
2025-03-31
Cell and Gene Therapy Landscape in 2025: A Snapshot of Progress and What to Watch
2025-03-31
Groundbreaking CRISPR/Cas9-based Genome Editing Therapy Secured the Second FDA Approval
2024-01-18
LATEST
GSK’s Blenrep Scores World-First Approval in UK for Multiple Myeloma
2025-04-17
Exosomes: The Small Couriers Moving Beyond Traditional Drug Delivery
2025-04-17
Trump Administration’s CDC Layoffs Shutter STD Lab, Sending Ripples Through Biotech and Global Health
2025-04-17
Fake Ozempic Floods Market as FDA Warns Patients to Check Authenticity of Prescriptions
2025-04-16
NIH Facing $20 Billion Budget Cut and Potential Consolidation in 2026
2025-04-16
Trump Administration Budget Proposal Includes $20 Billion Cut to NIH by 2026 and Agency Reorganization
2025-04-16
Robert F. Kennedy Jr.’s Proposed Budget Prioritizes Public Health, Environmental Protection, and Healthcare Reform
2025-04-16
EVENT
2025-04-21
World Vaccine Congress Washington 2025
Washington, U.S.A
2025-04-21
World Vaccine Congress 2025
Washington, U.S.A
2025-04-25
AACR Annual Meeting 2025
Chicago, U.S.A
2025-04-26
SABPA OC/LA 17th Annual Biomedical Forum
Irvine, California, United States
2025-05-03
29th Taiwan Joint Cancer Conference 2025
Taipei, Taiwan
2025-05-05
Swiss Biotech Day 2025
Basel, Switzerland
Scroll to Top