GENE ONLINE|News &
Opinion
Blog

2020-02-14| Technology

RNA-Silencing Protein AGO4 Functions In Antiviral Defense

by Rajaneesh K. Gopinath
Share To

Argonaute (AGO) proteins bind to short interfering RNAs (siRNAs) or microRNAs (miRNAs) and form the core of the RNA-induced silencing complex (RISC). Although the function of the AGO proteins in effecting gene silencing is well known, the individual functions of the four members, AGO1-AGO4 in antiviral immunity has remained elusive. A new study published recently reports the novel role of AGO4 protein in the antiviral defense pathway in mammals. This discovery offers a potential “universal” drug target for antiviral treatments in the future.

RNA interference provides innate immunity against invading viruses in plants and invertebrates. In mammals, viral RNAs have been found to elicit interferon (IFN) response following their recognition by specialized receptors. The presence of antiviral RNAi pathways in mammals was a topic of debate until two seminal Science papers published in 2013 had confirmed its existence. Since then, researchers have investigated how these antiviral systems complement or cooperate with each other. In mammals, AGO2 is the catalytically active endonuclease that is essential for processing small RNAs. The other AGO proteins, AGO1, 3 and 4 are thought to be redundant and the knowledge about their other functions is lacking.

Now, a collaborative study headed by the research group of Dr. Kate L. Jeffrey from Massachusetts General Hospital has discovered that AGO4 is essential for antiviral defense. Following up on an earlier study that implicated AGO2 in defending against influenza and other viruses in mammals in an IFN independent-manner, the authors had set out to investigate the antiviral functions of the other three members.

AGO4 was found to be abundant in the IFN-producing innate immune cells such as macrophages, monocytes, dendritic cells, and granulocytes than other counterparts. By promoting IFN after infection, AGO4 performed antiviral defense activity, especially against some RNA viruses in an IFN-dependent manner. Its absence from specific immune cells resulted in hypersusceptibility to influenza A, vesicular stomatitis virus, and encephalomyocarditis infections. This suggests that increasing the levels of AGO4 could be a potential treatment to contain viral infections. “The goal is to understand how our immune system works so we can create treatments that work against a range of viruses, rather than just vaccines against a particular one,” said Dr. Jeffrey.

Interestingly, AGO4 deficient cells showed increased viral titers in the IFN compromised cells. This demonstrated that AGO4 could achieve the ability to suppress viruses even without the IFN pathway (IFN-independent). The authors found higher levels of AGO-loaded virus-derived short interfering RNAs (vsiRNAs), the molecular marker of antiviral RNAi in macrophages infected with Influenza lacking the IFN and RNAi suppressor, NS1. These levels decreased in AGO4 deficient cells, demonstrating the antiviral RNAi activity of the protein.

In summary, the study has discovered the unique and powerful antiviral defense role performed by AGO4 in mammals. The next steps are to “determine how broad spectrum this is to any virus type,” said Dr. Jeffrey. “Then we need to discover how to boost AGO4 to ramp up protection against viral infections”. The study was published in Cell Reports.

Related reading: RNA Therapeutics: An Overview

References

  1. https://www.cell.com/cell-reports/pdfExtended/S2211-1247(20)30030-9
  2. https://www.massgeneral.org/news/press-release/Mass-general-hospital-researchers-identify-new-universal-target-for-antiviral-treatment
  3. https://www.nature.com/articles/nmicrobiol2016250

 

©www.geneonline.com All rights reserved. Collaborate with us: [email protected]
Related Post
Researchers Develop Fluorescent Biosensor to Study Immune Response to DNA
2025-03-20
Study Examines B Cell Mutation Strategies in Antibody Development
2025-03-20
Research and Innovation at Academia Sinica: Taiwan’s Hub for Interdisciplinary Integration in Science and Technology
2024-12-18
LATEST
AACR Annual Meeting 2025: Cancer Research Innovations, NIH Funding Advocacy, and AI-Driven Advances
2025-04-28
Senti Biosciences to Showcase New Cell & GeneTherapy Data at AACR Annual Meeting 2025
2025-04-27
World Vaccine Congress Washington 2025 Recap: Urgent Calls for Trust, Tech, and Global Access
2025-04-25
Astellas’ Transformation Journey: From Merger to Global Player, Betting on the Edge of Innovation and Risk?
2025-04-25
Roche Announces Massive 50 Billion Dollar Investment in the United States
2025-04-25
Steminent Stands Ready to Showcase Novel MSC-based Therapy for Spinocerebellar Ataxia at Global Stage
2025-04-24
Arkansas Medicaid Work Requirements Led to Coverage Loss for a Significant Number of Recipients
2025-04-24
EVENT
2025-04-25
AACR Annual Meeting 2025
Chicago, U.S.A
2025-05-03
29th Taiwan Joint Cancer Conference 2025
Taipei, Taiwan
2025-05-05
Swiss Biotech Day 2025
Basel, Switzerland
2025-05-13
ASGCT 28th Annual Meeting 2025
New Orleans, U.S.A.
2025-05-30
ASCO Annual Meeting 2025
Chicago, U.S.A
2025-06-11
ISSCR 2025 Annual Meeting
Hong Kong
Scroll to Top