GENE ONLINE|News &
Opinion
Blog

2021-10-14| Asia-Pacific

2021 BioJapan Highlights: How Can Metabolomics and Lipidomics Deepen Microbiome Research?

by Kathy Huang
Share To

The gut microbiome consists of approximately 100 trillion cells in the human body, which is much greater than the number of human somatic cells. Gut microbiota has been studied a lot in the past few decades. It is well-known that when gut microbiota is not balanced, diseases ranging from obesity, diabetes to inflammatory diseases will occur.        

In 2021 BioJapan, a session titled “Future Technologies to Deepen Gut Microbiome Research” introduces examples of interdisciplinary research between genomics and information sciences and future trends in gut microbial research.

 

Interdisciplinary Progress in Gut Microbial Research 

Professor Ogawa Jun from Kyoto University, Division of Applied Life Sciences, outlines the strategy for biotechnology development in microbial research. Prof. Jun mentioned that with the support of omics analysis and IT technology, microbiologists could identify and cultivate the desired microbial strains via synthetic biology.

Prof. Jun’s research suggested intestinal microbiota can prevent host obesity by metabolizing food-derived lipids and producing dietary polyunsaturated fatty acids (PUFA) called HYA. PUFAs modulate gut hormones released by the microbiota, which may play a role in maintaining the metabolism of the host.

 

Describing Gut Ecosystem with Lipidomics

Next, Professor Arita Makoto from Keio University, Division of Physiological Chemistry and Metabolism, introduced another tool to study gut microbiome research. Prof. Makoto pointed out that we often think of the “quantity” of lipids, but the “quality” of lipids matters, too. 

In order to understand the structure of diverse lipids, Prof. Makoto developed three domains to study lipid qualities:

  1. lipid-protein interactions
  2. lipid function in a mouse model and clinical study, and
  3. LS-MS/ MS-based lipidomics platform

Non-targeted lipidomics analysis can also be used to analyze gut microbiota, which would prove useful as the complex metabolic systems of microbiota are often under-researched. Prof. Makoto concluded that identifying functional bacteria involved in the biosynthesis of specific lipids as well as the bacteria’s genetic information would help clarify the correlations between gut microbiota and human diseases.

©www.geneonline.com All rights reserved. Collaborate with us: service@geneonlineasia.com
Related Post
Connecting Biotech Ecosystems: Success of Los Angeles Event Sets Stage for APAC-US Collaboration
2024-04-10
R&D
Innovating Prostate Cancer Care: SYNC-T, Proteogenomics, and Culturally Tailored Education at AACR 2024
2024-04-10
Previewing AACR 2024 With Select Pre-Meeting Highlights
2024-03-28
LATEST
Mechanisms of Allograft Rejection: Insights from Behind the Scenes
2024-04-25
ImmunityBio’s ANKTIVA® Granted FDA Approval: Breakthrough IL-15 Receptor Agonist First-in-Class for BCG-Unresponsive Non-Muscle Invasive Bladder Cancer
2024-04-24
Takeda, Astellas, and Sumitomo Mitsui Banking Declare Agreement For Early Drug Discovery Program Incubation in Joint Venture
2024-04-23
Ochre Bio Announces Partnership with Boehringer Ingelheim to Develop Novel Regenerative Treatments for Patients with Advanced Liver Disease
2024-04-22
Earth Day Awareness: Hospitals Embrace Sustainability Efforts
2024-04-22
WHO Raises Alarm: Bird Flu Threat to Humans an ‘Enormous Concern’
2024-04-19
The Legal Battlefield of Weight-Loss Drugs: Eli Lilly and Novo Nordisk on the Defensive
2024-04-18
EVENT
2024-04-27
2024 Biomedical Final Pitch Competition
Room DA1620, Dana Building, Dana-Farber Cancer Institute, 99 Jimmy Fund Way, Boston, MA 02115
Scroll to Top