GENE ONLINE|News &
Opinion
Blog

2024-01-30| R&D

Groundbreaking Real-Time MRI Enhances Nervous System Gene Therapy

by Sinead Huang
Share To

Researchers at The Ohio State University Gene Therapy Institute and The Ohio State University Wexner Medical Center have introduced a groundbreaking approach to deliver gene therapy to the nervous system. The method involves real-time magnetic resonance imaging (MRI), offering crucial insights into optimizing the effectiveness, safety, and efficiency of gene therapy in treating neurodegenerative, metabolic, and enzyme deficiency diseases.

Related article: Biotech Showcase 2024: A Wave of Innovation Washes Over Healthcare’s Future (Neurology and Psychiatry Sector)

Intraparenchymal Delivery in Clinical Trials

In several “first-in-human” clinical trials worldwide, including initiatives led by Ohio State’s Dr. Krzysztof S. Bankiewicz, direct intraparenchymal delivery of gene therapy has been employed. This method involves delivering therapy directly into the parenchyma, a tissue type with essential functions in the nervous system.

Dr. Bankiewicz, Chief Scientific Officer of the Gene Therapy Institute, anticipates broader adoption of real-time MRI in gene therapy delivery over the next 3 to 5 years. As more sites develop the necessary infrastructure and expertise, the innovation will play a pivotal role in enhancing safety, understanding distribution parameters, and gaining insights into efficacy in various trials and clinical care.

Clinical Impact and Therapeutic Understanding

The use of image-guided direct intraparenchymal gene therapy has shown promise in various neurologic disorders, including Alzheimer’s, Huntington’s, and Parkinson’s diseases. Dr. Asad S. Akhter, a neurosurgery resident at Ohio State and the study’s first author, emphasizes that this innovation not only improves biologic and clinical understanding but also leads to optimal clinical care for patients undergoing direct intraparenchymal nervous system gene therapy.

Dr. Bankiewicz has led studies involving children treated for AADC-deficiency, a neurotransmitter disorder. Pre-infusion symptoms, such as developmental delay and autonomic dysfunction, saw significant improvement post-infusion, showcasing the potential of this gene therapy approach. Real-time MRI allows for accurate cannula placement and optimized target structure perfusion, offering a comprehensive understanding that can lead to future refinements in delivery parameters.

©www.geneonline.com All rights reserved. Collaborate with us: service@geneonlineasia.com
Related Post
GeneOnline’s Pick: Top 10 Global Biotech News Stories in 2023
2023-12-27
M&A
Ajinomoto to Acquire Forge Biologics for $620 Million to Boost Gene Therapy Capabilities
2023-11-14
GeneOnline’s Weekly News Highlights: June 26-30
2023-07-03
LATEST
An Interview with the Inventor of HPV Vaccine, Ian Frazer, Building a Firewall for Public Health
2024-02-29
Taiwan’s Drug Price Adjustments: Balancing Cost and Availability
2024-02-28
Neomorph Links Together With Novo Nordisk in a $1.46 Billion Molecular Glue Partnership Deal
2024-02-27
Breakthrough Study Shows Anti-IgE Antibody Safeguards Children with Multiple Food Allergies
2024-02-27
Cortisol: New Discoveries on its Impact Across Health, Culture, and Evolution
2024-02-26
Why NVIDIA’s CEO Huang Said AI Fostering Life Science:Highlighting GPU’s Applications in Biotech
2024-02-23
Revolutionary AI-Powered Respiratory Monitor Maker Gets Financial Boost with Latest Funding
2024-02-21
EVENT
Scroll to Top